Quantum source-channel coding and non-commutative graph theory
نویسنده
چکیده
Alice and Bob receive a bipartite state (possibly entangled) from some finite collection or from some subspace. Alice sends a message to Bob through a noisy quantum channel such that Bob may determine the initial state, with zero chance of error. This framework encompasses, for example, teleportation, dense coding, entanglement assisted quantum channel capacity, and one-way communication complexity of function evaluation. With classical sources and channels, this problem can be analyzed using graph homomorphisms. We show this quantum version can be analyzed using homomorphisms on non-commutative graphs (an operator space generalization of graphs). Previously the Lovász θ number has been generalized to non-commutative graphs; we show this to be a homomorphism monotone, thus providing bounds on quantum source-channel coding. We generalize the Schrijver and Szegedy numbers, and show these to be monotones as well. As an application we construct a quantum channel whose entanglement assisted zero-error one-shot capacity can only be unlocked by using a non-maximally entangled state. These homomorphisms allow definition of a chromatic number for non-commutative graphs. Many open questions are presented regarding the possibility of a more fully developed theory.
منابع مشابه
ON THE SZEGED INDEX OF NON-COMMUTATIVE GRAPH OF GENERAL LINEAR GROUP
Let $G$ be a non-abelian group and let $Z(G)$ be the center of $G$. Associate with $G$ there is agraph $Gamma_G$ as follows: Take $Gsetminus Z(G)$ as vertices of$Gamma_G$ and joint two distinct vertices $x$ and $y$ whenever$yxneq yx$. $Gamma_G$ is called the non-commuting graph of $G$. In recent years many interesting works have been done in non-commutative graph of groups. Computing the clique...
متن کاملOn the commuting graph of non-commutative rings of order $p^nq$
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring...
متن کاملQuantum channels from association schemes
We propose in this note the study of quantum channels from association schemes. This is done by interpreting the (0, 1)-matrices of a scheme as the Kraus operators of a channel. Working in the framework of one-shot zero-error information theory, we give bounds and closed formulas for various independence numbers of the relative non-commutative (confusability) graphs, or, equivalently, graphical...
متن کاملZero-error Source-channel Coding with Entanglement
We study the use of quantum entanglement in the zero-error source-channel coding problem. Here, Alice and Bob are connected by a noisy classical one-way channel, and are given correlated inputs from a random source. Their goal is for Bob to learn Alice’s input while using the channel as little as possible. In the zero-error regime, the optimal rates of source codes and channel codes are given b...
متن کاملDirected prime graph of non-commutative ring
Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$. Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1405.5254 شماره
صفحات -
تاریخ انتشار 2014